Ensembles finis Exemples

Trouver la fonction réciproque f(x)=2x^2+12x-10
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1.1
Élevez à la puissance .
Étape 3.5.1.2
Multipliez par .
Étape 3.5.1.3
Appliquez la propriété distributive.
Étape 3.5.1.4
Multipliez par .
Étape 3.5.1.5
Multipliez par .
Étape 3.5.1.6
Additionnez et .
Étape 3.5.1.7
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1.7.1
Factorisez à partir de .
Étape 3.5.1.7.2
Factorisez à partir de .
Étape 3.5.1.8
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1.8.1
Factorisez à partir de .
Étape 3.5.1.8.2
Réécrivez comme .
Étape 3.5.1.8.3
Ajoutez des parenthèses.
Étape 3.5.1.9
Extrayez les termes de sous le radical.
Étape 3.5.2
Multipliez par .
Étape 3.5.3
Simplifiez .
Étape 3.6
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.1
Élevez à la puissance .
Étape 3.6.1.2
Multipliez par .
Étape 3.6.1.3
Appliquez la propriété distributive.
Étape 3.6.1.4
Multipliez par .
Étape 3.6.1.5
Multipliez par .
Étape 3.6.1.6
Additionnez et .
Étape 3.6.1.7
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.7.1
Factorisez à partir de .
Étape 3.6.1.7.2
Factorisez à partir de .
Étape 3.6.1.8
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.8.1
Factorisez à partir de .
Étape 3.6.1.8.2
Réécrivez comme .
Étape 3.6.1.8.3
Ajoutez des parenthèses.
Étape 3.6.1.9
Extrayez les termes de sous le radical.
Étape 3.6.2
Multipliez par .
Étape 3.6.3
Simplifiez .
Étape 3.6.4
Remplacez le par .
Étape 3.6.5
Réécrivez comme .
Étape 3.6.6
Factorisez à partir de .
Étape 3.6.7
Factorisez à partir de .
Étape 3.6.8
Placez le signe moins devant la fraction.
Étape 3.7
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.1
Élevez à la puissance .
Étape 3.7.1.2
Multipliez par .
Étape 3.7.1.3
Appliquez la propriété distributive.
Étape 3.7.1.4
Multipliez par .
Étape 3.7.1.5
Multipliez par .
Étape 3.7.1.6
Additionnez et .
Étape 3.7.1.7
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.7.1
Factorisez à partir de .
Étape 3.7.1.7.2
Factorisez à partir de .
Étape 3.7.1.8
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.8.1
Factorisez à partir de .
Étape 3.7.1.8.2
Réécrivez comme .
Étape 3.7.1.8.3
Ajoutez des parenthèses.
Étape 3.7.1.9
Extrayez les termes de sous le radical.
Étape 3.7.2
Multipliez par .
Étape 3.7.3
Simplifiez .
Étape 3.7.4
Remplacez le par .
Étape 3.7.5
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.5.1
Remettez dans l’ordre et .
Étape 3.7.5.2
Réécrivez comme .
Étape 3.7.5.3
Factorisez à partir de .
Étape 3.7.5.4
Factorisez à partir de .
Étape 3.7.5.5
Réécrivez comme .
Étape 3.7.6
Placez le signe moins devant la fraction.
Étape 3.8
La réponse finale est la combinaison des deux solutions.
Étape 4
Replace with to show the final answer.
Étape 5
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Le domaine de l’inverse est la plage de la fonction initiale et inversement. Déterminez le domaine et la plage de et puis comparez-les.
Étape 5.2
Déterminez la plage de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Étape 5.3
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 5.3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.1
Divisez chaque terme dans par .
Étape 5.3.2.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2.1.2
Divisez par .
Étape 5.3.2.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1.3.1
Divisez par .
Étape 5.3.2.2
Soustrayez des deux côtés de l’inégalité.
Étape 5.3.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 5.4
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 5.5
Comme le domaine de se trouve sur la plage de et comme la plage de est le domaine de , est l’inverse de .
Étape 6